Improving mine recognition through processing and Dempster-Shafer fusion of ground-penetrating radar data

نویسندگان

  • Nada Milisavljevic
  • Isabelle Bloch
  • Sebastiaan van den Broek
  • Marc Acheroy
چکیده

A method for modeling and combination of measures extracted from a ground-penetrating radar (GPR) in terms of belief functions within the Dempster–Shafer framework is presented and illustrated on a real GPR data set. A starting point in the analysis is a preprocessed C-scan of a sand-lane containing some mines and false alarms. In order to improve the selection of regions of interest on such a preprocessed C-scan, a method for detecting suspected areas is developed, based on region analysis around the local maxima. Once the regions are selected, a detailed analysis of the chosen measures is performed for each of them. Two sets of measures are extracted and modeled in terms of belief functions. Finally, for every suspected region, masses assigned by each of the measures are combined, leading to a 7rst guess on whether there is a mine or a non-dangerous object in the region. The region selection method improves detection, while the combination method results in signi7cant improvements, especially in eliminating most of the false alarms. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-sensor Data Fusion Based on Belief Functions and Possibility Theory: Close Range Antipersonnel Mine Detection and Remote Sensing Mined Area Reduction

Two main humanitarian mine action types may benefit from multi-sensor data fusion techniques: 1) close range antipersonnel (AP) mine detection and 2) mined area reduction. Data fusion for these two applications is presented here. Close range detection consists of detection of (sub-)surface anomalies that may be related to the presence of mines (e.g., detection of metals using a metal detector, ...

متن کامل

Improving detection of buried land mines through sensor fusion

A sensor-fused system has been developed for detection of buried land mines. The system uses a ground-penetrating radar, an infrared camera, and an electromagnetic induction sensor. In the current implementation each sensor is used independently, and fusion is performed during post-processing. We briefly describe the sensors and a data collection involving buried mine surrogates. Algorithms for...

متن کامل

Sensor fusion in anti-personnel mine detection using a two-level belief function model

A two-level approach for modeling and fusion of antipersonnel mine detection sensors in terms of belief functions within the Dempster–Shafer framework is presented. Three promising and complementary sensors are considered: a metal detector, an infrared camera, and a ground-penetrating radar. Since the metal detector, the most often used mine detection sensor, provides measures that have differe...

متن کامل

Designing a Home Security System using Sensor Data Fusion with DST and DSMT Methods

Today due to the importance and necessity of implementing security systems in homes and other buildings, systems with higher certainty, lower cost and with sensor fusion methods are more attractive, as an applicable and high performance methods for the researchers. In this paper, the application of Dempster-Shafer evidential theory and also the newer, more general one Dezert-Smarandache theory ...

متن کامل

A NEW FUZZY MORPHOLOGY APPROACH BASED ON THE FUZZY-VALUED GENERALIZED DEMPSTER-SHAFER THEORY

In this paper, a new Fuzzy Morphology (FM) based on the GeneralizedDempster-Shafer Theory (GDST) is proposed. At first, in order to clarify the similarity ofdefinitions between Mathematical Morphology (MM) and Dempster-Shafer Theory (DST),dilation and erosion morphological operations are studied from a different viewpoint. Then,based on this similarity, a FM based on the GDST is proposed. Unlik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2003